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Dissipative Particle Dynamics has been used effectively as a modelling technique
to perform Computational Fluid Dynamics. DPD preserves some molecular
detail whereas in classical CFD this is lost. The technique has been tested in two
cases of macromolecules in flow simulations. First, the behaviour of a polymer
within a square capillary has been studied, which is the basis of hydrodynamic
chromatography. Secondly, the effect of polymers on the melting in shear flow
has been simulated.
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1. INTRODUCTION

Dissipative Particle Dynamics (1) can be best described as a type of coarse
grained Molecular Dynamics. The particles in DPD are not single mole-
cules but represent a mesoscopic cluster of molecules. The method has
shown to be a very flexible tool especially for complex fluid simulations. It
has been used in a wide variety of areas (2) such as suspensions, (3) multi-
component flows, (4) phase separation in polymer systems, (5) and thermal
problems. (6, 7)

In DPD particles experience interaction forces from particles in their
proximity. The interaction is pairwise and total momentum is conserved. It
has been shown both theoretically(8) and by simulation (9) that the macro-
scopic behaviour is hydrodynamical. Since the interactions have a stochastic
component, Brownian motion can be taken into account.



As a shortcoming in DPD the total energy is not conserved, but this
problem has been solved recently by both Avalos and Mackie (10) and
Español. (11) An other deficiency arises in the modelling of solid walls. When
modelling the solid as particles with zero velocity a no slip condition at the
wall could only be achieved by increasing the density of particles in the wall
resulting in a low density region near the wall. A method to solve these
problems is described in Willemsen et al. (9)

As one of the merits of DPD polymers can be simulated very easily,
by attaching springs between particles. This just adds an extra spring force
between the two attached particles. This concept has been shown to
adequately describe both thermodynamic (5) and fluid flow behaviour of
polymeric liquids. (12) The beauty of the method lies in its preserving of
some molecular detail while simulating macroscopic flow. This means that
along with the position of the polymer the orientation and radius of
gyration can be calculated. The scaling laws that emerge for these DPD
polymers are in good agreement with well established theory. (12, 13)

In this article the advantages of incorporating polymers in a DPD
simulation will be exploited. We will show that DPD is a powerful tool
when studying the behaviour of polymers in a flow field. In order to do so
two systems are considered. The first describes the behaviour of polymers
of different sizes flowing in a narrow channel. In the other a solid polymer
particle is melted in shear flow. In both cases the coordinates of the beads
of the polymer are known so the behaviour of the polymer can be studied
with a resolution down to the molecular shape.
In the case of flow through a narrow channel the mean velocity of the

polymer will differ from the mean velocity of the solute. This is due to
the difference in size of the solute and a polymer molecule. The larger the
polymer molecule the more difficult it is for the centre of mass of this
molecule to be close to the wall. Therefore the polymer will not be
subjected to the low velocities in the vicinity of the wall and hence on
average have a larger velocity than a solute molecule. A macromolecule
separation technique called hydrodynamic chromatography is based on this
principle.
In the case of melting in a shear flow the solid consists either of single

DPD particles or of a number of strings of particles (polymer). In this way
the effect of the solid consisting of a polymer can be studied while all other
properties are kept constant. The difference between the systems becomes
clear at the very instant the individual particles (either or not in a chain)
reach the melting temperature. A single particle becomes mobile and can
move away from the solid instantaneously. In contrast, the mobility of a
particle of a chain is co-determined by the conditions of the other particles
in the chain.
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The remainder of this paper is organised as follows. First the model is
explained. Then the two cases: hydrodynamics chromatography and melting
in shear flow, a problem description, computational details and results are
presented. Finally in the last section some conclusions are drawn.

2. THE DPD MODEL

2.1. Classical DPD

For completeness the DPD scheme will be given, although it can be
found in many places in literature. The time evolution of the positions
(ri(t)) and impulses (pi(t)) (for simplicity we take the masses of all par-
ticles 1) of the imaginary particle is given by:

dri
dt
=vi(t),

dvi
dt
=f i(t) (1)

The force acting on the particles can be seen as a combination of three
parts:

f i(t)=C
j ] i
(FCij+FDij+FRij) (2)

The first part is the conservative force

FCij=˛aij 11−
rij
rc
2 r̂ij (rij < rc)

0 (rij \ rc)
(3)

where aij is the maximum repulsion between particle i and j, rij=ri− rj,
rij=|rij |, r̂ij=rij/|rij |, and rc is the cut-off radius. The second and third
force are the dissipative and the random force:

FDij=−cw
D(rij)(r̂ij · vij) r̂ij

FRij=sw
R(rij) hij r̂ij

(4)

In which vij=vi− vj, c is the friction coefficient and s is the noise ampli-
tude, w(rij) is a weight function, which tends to zero for r=rc, and hij is a
random number from a Gaussian distribution with zero mean and 1/dt
variance.
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Espagñol and Warren (8) showed that the weight functions and con-
stants in these forces can be chosen arbitrarily, but they should obey:

[wR(rij)]2=wD(rij)

s2=2kBTc
(5)

with kB the Boltzmann constant, which is the unit of energy.
The equations of motion are solved using the modified velocity-Verlet

algorithm as presented by Groot and Warren. (5) The weight function for
the random force has the following functional form: wR(rij)=1−

r
rc
, and we

choose rc=1.0, which is the unit of length.

2.2. Energy Conserving DPD

When energy conservation plays an important role, as in our melting
simulations, two extra variables need to be considered: the internal energy
and the temperature. Since the temperature of the individual DPD particles
may vary, it is no longer possible to use Eq. (5) to calculate the friction
coefficient c and the noise amplitude s. However, Español (11) suggests to
keep the noise amplitude constant for all particles and to determine the
friction constant from the fluctuating temperatures:

cij=
s2

4
5 1
Ti
+
1
Tj
6 (6)

where Ti is the temperature of particle i. The evolution of the internal
energy Ei is given by:

dEi
dt
=
1
2
5C
j
[wD(rij) cij(vij · r̂ij)2−s

2
ijw

2
R(rij)]−C

j
sijwR(rij)(vij · r̂ij) h

V
ij
6

+C
j
oij 1

1
Ti
−
1
Tj
2 wTD(rij)+C

j
aijwTR(rij) h

T
ij (7)

hVij and h
T
ij are uncorrelated random numbers from a Gaussian distribution

with zero mean and 1/dt variance.
The upper part of this equation is related to viscous heating of the

particles, while the lower part is related to the conduction of heat. oij repre-
sents a thermal conductivity, that depends on the internal energy of particles
i and j and follows from (11):

oij=
õ

l2
Ti+Tj
2
Ei+Ej
2

(8)
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Here, l is the average distance between particles and õ is the thermal
diffusivity.
Finally, the detailed balance condition requires that a2ij=2oij, and the

following relationship between the weight functions (8):

w2R(rij)=wD(rij)

w2TR(rij)=wTD(rij)
(9)

This just leaves the relation between the internal energy and the tem-
perature of the DPD particles. In the case of a material that changes phase
three stages can be defined. First the material is solid (with a solid heat
capacity), then the solid will melt, and finally the material is completely
liquid (with a liquid heat capacity). This leads to the following equation of
state:

T(E)=˛
E

Cv, s
E < Tm ·Cv, s

Tm Tm ·Cv, s [ E [ Tm ·Cv, s+L

Tm+
E−L−Tm ·Cv, s

Cv, l
E > Tm ·Cv, s+L

(10)

where Cv, s and Cv, l are the solid and liquid heat capacities, Tm is the melting
temperature and L is the enthalpy of fusion. This equation of state is
similar to the enthalpy method (14) commonly used in phase change problems.

3. HYDRODYNAMIC CHROMATOGRAPHY

3.1. Problem Description

Pressure driven flow through a rectangular pipe is a problem that is
interesting for chromatography as shown by Cifuentes and Poppe. (15) We
want to study the principles of a chromatographical method called hydro-
dynamic chromatography. Macromolecules are separated according to
their difference in size. This is realised in capillaries of small sizes even on
chip like devices. (16) The lateral dimensions of the capillary are only
between one and three orders of magnitude larger than the dimensions of
the polymer. This circumstance enables us to perform a DPD simulation of
the macroscopic flow together with a polymer. The system under consid-
eration in this paper is a square pipe where the driving force for the flow is
a pressure drop.
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3.2. Computational Detail

Simulations are performed in a 8×8×8 sized simulation box contain-
ing 5120 particles. The z-direction is the direction of flow, solid walls are
created at both sides (x-direction) and top and bottom (y-direction) on
which a no-slip boundary condition is imposed as described by Willemsen
et al. (9) Because we want to simulate a very long capillary a periodic
boundary is created in the z-direction. The first problem is to check
whether the box in z-direction is large enough in order to have no effect
from the polymer molecule on itself. By performing simulations with dif-
ferent sizes it turned out that 8rc in the z-direction is sufficient for polymers
up to length 20.
The second problem is how to deal with the pressure gradient. Apply-

ing standard DPD with a periodic boundary condition would not lead to
the desired result of a constant pressure drop but it would give a saw-tooth
pressure profile. Because the pressure drop over the pipe is constant it can
be treated as being simply a body force in the z-direction. So in the
momentum balance for every DPD particle a force in the z-direction is
added. The value of this force is 0.005.
As has been pointed out by Groot and Warren (5) the difference in

maximal repulsion between two different species (e.g., aAB−aAA) is propor-
tional to the Flory–Huggings q parameter. This is a measure of the poly-
mer’s solubility in the solute: if q=0 the polymer would be perfectly
soluble, a larger q stands for a worse solubility. Since the solubility
influences the radius of gyration this is an important parameter to describe
the separation. We have chosen the parameters for polymer–polymer and
monomer–monomer interaction to be aii=3.0 and the polymer–monomer
interaction to be aij=4.0.
The temperature of the simulations is chosen to be kBT=0.1, s=10.0

and the timestep is 0.01. The system was equilibrated for 104 timesteps after
which the simulation ran for 5 · 105 steps.

3.3. Results

Before studying the flow of solute plus polymer, the flow of solute
only is analyzed. Therefore the axial velocities are averaged in space over a
29×29 (x, y) grid, and in 5 · 105 steps over time. In the article of Cifuentes
and Poppe (15) an analytical solution is given for this flow. It reads:

Vz(x, y)=
1−x2

2
−16 C

.

j=1, 3, 5...
(−1)

j−1
2
cos(jpx2 ) cosh(

jpy
2 ) sech(

jpf
2 )

(jp)3
(11)

58 Willemsen et al.



Fig. 1. Comparison of the averaged axial velocity from the DPD simulation and the analyt-
ical solution at different position in the capillary. In the left picture the velocity profile in the
centre of the capillary is is plotted. In the right picture the velocity profile close to the four
walls of the capillary (designated left,right,top and bottom) are shown. The simulation results
are normalised with the maximal velocity (Vz, max=0.147).

where (0, 0) is the middle of the pipe, and the x-coordinate is normalised to
run between [−1, 1], and the y-coordinate between [−f, f]. In Fig. 1 the
results are depicted for the simulation together with the analytical solution.
As can be seen from the graphs the simulation results agree well with the
analytical solution.
Now having demonstrated that the flow inside the rectangular pipe

can be calculated accurately with DPD, polymer is added. During this
simulation the position of the centre of mass of the polymer is determined,
and the axial velocity is monitored. Initially the polymer is placed in the
middle of the pipe. For the sake of comparison also the movement of a
single DPD particle is analyzed. In Fig. 2 the movement of this centre of
mass can been followed during a simulation of 2.5 · 106 timesteps. The DPD
simulation predicts that the larger polymer remains more distant from the
wall than the smaller polymer. Also, the monomer can move up to or even
collide with the wall.
In Table I the radius of gyration and the mean velocity of the poly-

mers is shown. It is apparent that this restricted movement though the
cross-section of the pipe does influence the mean axial velocity. A general
trend is the longer the polymer chain the larger the mean velocity. The dis-
crepancy in this reasoning is the polymer of length 10. However, from
Fig. 2 we can see that this is probably due to the method of sampling. This
polymer seems to stay in the lower right corner of the capillary for a long
time, reducing the mean axial velocity.
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Fig. 2. Position of the centre of mass in the cross-section of the pipe during the simulation
for different polymer lengths.

Table I. Radius of Gyration and Mean Velocity for Different Polymer Lengths

Length Radius of gyration Mean axial velocity

1 — 0.117
5 0.239 0.138
10 0.409 0.135
20 0.549 0.163
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In conclusion, apart from accurately calculating the flow through
pipes similar to standard CFD simulations, the incorporation of polymers
in DPD indeed enables us to study the behaviour of polymers in these
flows. It is demonstrated that the observed behaviour of the polymer
chains in such flows is qualitatively well predicted by the DPD simulations.

4. MELTING IN SHEAR FLOW

4.1. Problem Description

Melting of polymeric materials is an important step in polymer pro-
cessing. Since this mainly takes place in large scale extruders, the dimension
of these machines is beyond the reach of DPD. However, the interaction
between flow and the melting process can be studied on a smaller scale,
giving insight in the specific behaviour of macromolecular materials as
compared to non-polymeric materials. We have already shown (7) that it is
possible to describe the movement of a melting front in a solid within the
DPD framework. In this reference only the change of internal energy was
calculated, while the particles were not allowed to move. Here we apply
this method to the melting of a solid particle in a flow field. The system to
be considered consists of two plates moving in opposite directions, causing
shear flow between them. The plates have an elevated temperature (above
the melting point of this material). Then a cold particle (below the melting
point) is placed between these plates. The particle may consist of mono-
meric DPD particles or polymeric ones. The difference in melting beha-
viour has been studied.

4.2. Computational Detail

In these simulations two phases exist. A fluid phase, which has a tem-
perature above the melting point, and a solid phase, which has a tempera-
ture equal to or below the melting point. The interaction between the solid
and the liquid has been treated in the following way: first the update in
energy is calculated [Eq. (7)]. With this updated energy value the new
temperature is calculated using the equation of state [Eq. (10)]. Only if the
new temperature of the particle is above the melting temperature an update
in the velocity and position is calculated. This means that the particles
remain at their fixed position and keep a zero velocity as long as they stay
below the melting temperature.
The first step in the melting simulations is the creation of the solid. To

this end a simulation is performed in a 4×4×4 (x, y, z) sized simulation
box containing 640 particles. The particles put in the simulation box are
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either non-connected particles or polymers. This system is allowed to
equilibrate for 104 timesteps. At the end of this equilibration simulation the
particles are shifted to the middle of a 12×24×4 sized simulation box and
given a temperature of 0.029, which is below the melting temperature
(Tm=0.0295). Then particles are placed in the remainder of this larger box
so that a total of 11520 particles is reached. These new particles are given
an initial temperature of 0.030.
At x=0 and x=12 solid walls are present which moving with veloci-

ties of Vy=1.0 and Vy=−1.0 respectively. Again these walls are modelled
as no-slip boundaries. In the other two directions periodic boundaries are
used. The walls have a temperature of 0.030.
Further simulation parameters are: s=1.0, thermal conductivity

õ=0.1, solid and liquid heat capacity Cv, s=Cv, l=105, heat of fusion
L=500, the repulsion between all particle monomers or polymers aii=
aij=3.0, and the timestep is 0.01.

4.3. Results

In Fig. 3 two snapshots of the velocity vectors and the temperature
profiles are shown. In the first picture, the conduction of heat in the solid
can be seen. Also the formation of two circulation loops, one above and
one under the solid is visible. Because of this reversal of flow the solid
melts faster on bottom left and top right corners, causing an elliptical shape
to form in the later stages of the melting process, as shown in the second
picture. Mind that this is not due to a rotation of some sort (since the solid
is kept stationary at all times), but merely caused by the asymetry in the
melting process in itself.
The melting process can also be studied by monitoring the lowest

temperature in the simulation, which typically is the centre temperature of
the solid. A graph of this lowest temperature is given in Fig. 4. In the first
part of the graph the heating of the solid (through conduction) can be seen.
At the instant when the solid reaches the melting temperature (0.0295) its
temperature remains constant until the whole solid is molten. Finally it
rises to reach the temperature of the walls (0.030). The second line in the
graph represents the case when the solid is made of polymer chains of
length 10. The heating of the solid (the first part of the graph) is not
affected by the construction of the solid. However, it can be seen that the
total melting time (this is the time at which the minimal temperature is
above the melting temperature) is affected. It takes about 6 persent longer
for the polymeric solid to melt. This can be explained as follows: when a
DPD particle has reached a temperature above the melting point it can
start moving. The bulk flow will take up this particle and move it away
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Fig. 3. Two snapshots of the temperature profile and velocity vectors between the two
moving plates. The horizontal direction (between 0 and 12) is the x-direction, while vertically
(between 0 and 24) the y-direction is plotted. The color bar represents the temperature range.
At time=120 the solid is completely at the melting temperature.

from the solid. However, if this particle is part of a polymer chain, some
part of this chain might still be solid. Therefore, the molten DPD particles
will still be attached to the solid, and stay near the solid for a longer time,
thus hindering the flow of fresh hot particles. So the heat-flow towards the
solid will be slower, resulting is a longer total melting time.
This shows that DPD allows the incorporation of molecular effects in

a melting simulation, which is not possible in an equally convenient way in
conventional CFD. This again demonstrates the benefits of DPD over
conventional CFD in problems involving polymers.

5. CONCLUSIONS

In this paper we have demonstrated the benefits of Dissipative Particle
Dynamics as a method to solve complex flow problems involving polymers.
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Fig. 4. The minimal temperature occurring in the simulation plotted against simulation
time. The dotted line represents the solid created by separate DPD particles, while the solid
line represents the solid created by polymer chains of length 10.

First, DPD was tested by comparing the predicted velocity profile for
pressure driven flow within a square pipe with an analytical solution. The
agreement between the two was found to be good. However, the DPD
method has some additional merits, since it is easy to incorporate poly-
mers, which is impossible in the classical CFD framework.
These benefits of DPD have been shown in two case studies. First,

the separation principle of hydrodynamic chromatography has been inves-
tigated, and observed trends were predicted well by the DPD method.
Secondly, the effect of polymer chains on the melting in shear flow has
been studied, and the melting of polymers turned out to be slower than of
solids constructed of non-connected DPD particles.
The next step in this research is to get quantitative results from the

DPD simulations. This requires mapping of DPD parameters. For the case
of hydrodynamic chromatography the q parameter has to be mapped with
the repulsion difference between the polymer and the solvent. Furthermore,
the ratio between diffusion coefficient and viscosity has to be matched with
experimental conditions. For the case of melting, the ratio between heat
diffusion and convection has to be matched with experimental conditions.
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